A Numerical Discussion for the European Put Option Model

نویسندگان

چکیده

The Black-Scholes equations have been increasingly popular over the last three decades since they provide more practical information for optional behaviours. Therefore, effective methods needed to analyze these models. This study will focus mainly on investigating behavior of equation European put option pricing model. To achieve this, numerical solutions model are produced by combined methods. Spatial discretization is performed using a fourth-order finite difference (FD4) scheme that allows highly accurate approximation solutions. For time discretization, techniques proposed: strong-stability preserving Runge Kutta (SSPRK3), (RK4) and one-step method. results compared with available literature exact solution.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Solution of Pricing of European Put Option with Stochastic Volatility

In this paper, European option pricing with stochastic volatility forecasted by well known GARCH model is discussed in context of Indian financial market. The data of Reliance Ltd. stockprice from 3/01/2000 to 30/03/2009 is used and resulting partial differential equation is solved byCrank-Nicolson finite difference method for various interest rates and maturity in time. Thesensitivity measures...

متن کامل

A Simple Numerical Method for Pricing an American Put Option

We present a simple numerical method to find the optimal exercise boundary in an American put option. We formulate an intermediate function with the fixed free boundary that has Lipschitz character near optimal exercise boundary. Employing it, we can easily determine the optimal exercise boundary by solving a quadratic equation in time-recursive way. We also present several numerical results wh...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The British Put Option

We present a new put option where the holder enjoys the early exercise feature of American options whereupon his payoff (deliverable immediately) is the ‘best prediction’ of the European payoff under the hypothesis that the true drift of the stock price equals a contract drift. Inherent in this is a protection feature which is key to the British put option. Should the option holder believe the ...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Erzincan University Journal of Science and Technology

سال: 2021

ISSN: ['1307-9085', '2149-4584']

DOI: https://doi.org/10.18185/erzifbed.758426